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Abstract 
The Magnetohydrodynamic (MHD) Hiemenz boundary layer flow over a flat 

plate embedded in a porous medium in the presence of transverse magnetic field has 

been studied. The governing equations are solved by differential transformation method 

with Pade approximant (DTM-Pade) and Runge-Kutta method along with shooting 

technique. The results of these two methods are compared with the results obtained by 

finite difference method in conjunction with quasilinearization technique reported 

earlier in case of the flow without porous medium. It is found that the results of DTM-

Pade, Runge-Kutta and quasilinearization technique agree with each other within a 

certain degree of accuracy. The convergence of the method in attaining the ambient 

state is faster in case of Runge-Kutta method than the DTM-Pade which can be 

improved by employing higher dimension Pade approximant matrices. It is also 

remarked that both magnetic field and porous matrix enhance the velocity field as well 

as skin friction. This is due to the fact that the boundary surface effects override the 

effects of magnetic field as well as porous matrix. 

Key words:  Hiemenz magnetic flow; Porous medium; DTM; Pade approximant;  

Finite difference; Quasi-linearization. 
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1. Introduction 

The flow in which the velocity of the incoming fluid is perpendicular to a plane 

surface is known as Hiemenz flow [1]. If in addition the fluid is electrically conducting, 

the flow is then called Hiemenz magnetic flow. The solution of this problem is of 

interest because it is one of the few exact solutions of Navier-Stokes equation in 

magnetohydrodynamics. Further, the governing equations of the Hiemenz magnetic 

flow are non-linear. An effective method of solution is the method of finite difference in 

conjunction with quasi-linearization as presented in NA [2]. 

To date, an enormous amount of work has been done on the boundary layer flow 

with consideration of stretching sheet problem. The engineering applications of 

stretching sheet problem include glass blowing, the extrusion of a polymer in a melt-

spinning process, cooling and/or drying of papers and textiles, continuous castings and 

spinning of fibres etc. The investigations made by [3-4] deal with flow and heat transfer 

induced by stretching sheet. Theoretical investigations in [5-6] highlighted many 

important features of the flow over a stretching sheet. Very recently, Nayak [7] have 

analyzed on chemical reaction effect on MHD viscoelastic fluid over a stretching sheet 

through porous medium. 

 The two relevant properties associated with the study of flow through porous 

media are porosity and permeability. Porosity basically describes the fraction of total 

volume which is occupied by the holes. Permeability is a measure of the capacity with 

which fluids will flow through a porous material. Table 1 presents the numerical values 

of effective porosity and permeability of materials of common use. The porous matrix is 

included because the flow and heat transport processes occur by using insulating 

material (porous matrix) that greatly prevents heat loss/energy loss and accelerates the 

process of cooling/heating as the case may be serving as a heat exchanger. Also the 

studies [8-13] indicate the effect of porosity for fluid flow of different fluids past 

stretching/shrinking sheet. 
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The objective of the present study is to apply DTM, DTM-Pade approximant 

and Runge-Kutta method to solve modified Navier-Stokes equation for Hiemenz 

magnetic flow through porous media and to compare the results obtained by the present 

methods of solution with the results reported in [2] employing finite difference method 

in conjunction with quasilinearization technique. 

Table 1: Porosity and permeability of typical porous materials. 

Material Effective porosity  Permeability 

Brick 0.12 0.34  11 94.8 10 2.2 10     

Copper powder 0.09 0.34  6 53.3 10 1.5 10     

Leather 0.56 0.59  10 99.5 10 1.2 10     

Limestone 0.04 0.10  11 102.0 10 4.5 10     

Sand 0.37 0.50  7 62.0 10 1.8 10     

Sand stone 0.08 0.38  12 85.0 10 3.0 10     

Silica powder 0.37 0.49  10 101.3 10 5.1 10     

Soil 0.43 0.54  9 72.9 10 1.4 10     

Wire crimps 0.68 0.76  5 43.8 10 1.0 10     

2. Hiemenz Magnetic Flow 

 The boundary layer equations for Hiemenz magnetic Darcy flows for viscous 

fluid following [14] are: 

Continuity: 0
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where 
*, , , , pu v K   and a  are respectively the x -component of the velocity, the y -

component of the velocity, the viscosity, the density, the permeability of the medium 

and a constant known as initial stretching rate (characteristic of the incoming flow) with 

dimension (time)-1. Further,   and B  are respectively the electrical conductivity and 

magnetic induction. The last term represents the additional resistance due to porosity of 

the porous medium. The flow geometry is shown in Fig. 1. 

 

 

 

 

 

 

  

 

 

    Fig. 1  Flow geometry 

 

The first two prescribed boundary conditions represent neither slip nor mass 

transfer on the surface where the conditions are at infinity (i.e. ambient state) means that 

the velocity of the fluid approaches a linear relation with x .  
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where 
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M
a





 is the magnetic parameter and 

*

p

p

aK
K 


 is the dimensionless 

permeability parameter. 

 

Case–I: 0, pM K   (for large value of pK ), the problem reduces to the flow of 

fluids without magnetic field and porous medium. 

 

Case-II:  M = 0 and pK  finite (for small value of pK ), the problem represents 

Newtonian flow through porous medium without magnetic field. 

 

Case-III: 0M  and pK  finite (for small value of pK ), the problem represents the 

Darcy flow of conducting fluid in the presence of magnetic field with low magnetic 

parameter. 

 

 Solution of equation (6) with boundary conditions (7) is obtained by employing 

differential transformation method with Pade approximant (DTM-Pade) and Runge-

Kutta method. The results of these two methods are compared with the results obtained 

by finite difference method in conjunction with quasilinearization [2].  
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3. Differential Transformation Method 

Differential transformation method is a numerical method based on Taylor’s 

expansion. This method determines the coefficients of series expansion of unknown 

function by using the initial data on the problem. The concept of differential 

transformation method was first proposed by Zhou [15]. The DTM-Pade was applied to 

electric circuit analysis problems and also it was applied to several systems of 

differential equations for example, initial value problems [16], difference equations 

[17], integro-differential equations [18], and partial differential equations [19]. 

Definition 1. The one dimensional differential transform of a function ( )f  at the point 

0   is defined as  
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where ( )f   is the original function and ( )F k  is the transformed function. 

 

Definition 2. The differential inverse transform of  ( )F k  is defined as 
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The other properties are enlisted in Table 2. 
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Table 2:   Some properties of differential transformation method. 
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4. Pade Approximant 

Some techniques exist to accelerate the convergence of a given series. Among 

them the so-called Pade approximant is widely applied (Baker and Morris, [20]). 

Suppose that a function ( )f   is represented by a power series, 
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This expression is the fundamental point of any analysis using Pade approximant. The 

notation , 0,1,2ic i   is reserved for the given set of coefficients and ( )f   is the 

associated function. [ / ]L M  Pade approximant is a rational fraction, defined as 
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which has a Maclaurin expansion, agrees with equation (10) as far as possible.  It is 

noticed that in equation (11) there are L+1 numerator and M+1 denominator 

coefficients. So there are L+1 independent numerator and M independent denominator 

coefficients, making  L+M+1 unknown coefficients in all. This number suggests that 
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normally [ / ]L M  ought to fit the power series equation (10) through the orders 

21, , L M   . In the notation of formal power series  
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If 0,j   0ic   for consistency. Since 
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From these equations, 
ib  may be found. The numerator coefficients 
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Thus equations (15) and (16) normally determine the Pade numerator and 

denominator and are called Pade equations. The [L/M] Pade approximant is constructed 

which agrees with the equation (12) through the order L M  . 

 

5. Solution of the Problem 

5.1 Analytical solution 

Consider the equation (4)  
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Combination of the series obtained by DTM and Pade approximant will yield 

the numerical value of (0)f  so as to reduce the present boundary value problem (BVP) 

into an initial value problem (IVP). The diagonal Pade approximants of degree [2 / 2]  is 

employed to determine the approximate solution. 

Let (0) 2f A  , where A  is a positive constant. Now, the differential transform 

method (DTM) will be applied to equation (17) as follows: 
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The differential transform of boundary conditions are 
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Applying the differential inverse transform,  

0

( ) ( ) k

k

f F k 




   

2 3 4

1 1
1

6 12

p p

M M A
K K

A

   
        

          

     

2

2
5 6

1 1 1 1
1 1

30 120 160 180

p p p p

M M M A M A
K K K KA

        
                                  
  
  

   

  (21)  

 

Case I : ( 0.5M  , 100pK  )  

The DTM expression (21) becomes 
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Now our aim is to determine A using the boundary condition  
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Applying the boundary condition (23) to [2/2] Pade approximant of the derivative of the 

polynomial solution (22), we get 
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which gives 0.8184854107A . 
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Similarly, the following values of A  are obtained for the various values of M  and pK  

as depicted in Table - 3. 

 

Table - 3: Determination of A. 

M Kp A 

0.5 100 0.8184854107 

1 100 0.8660254038 

2 100 0.8918112327 

0.5 0.5 0.8011621274 

1 0.5 0.9632417272 

2 0.5 1.0032411257 

5.2 Numerical solution 

The governing equation is solved numerically by applying fourth order Runge-

Kutta method along with shooting technique. This method has been proven to be 

adequate and gives accurate results for boundary layer equation. The solution is 

computed for the dimensionless velocity and shown graphically. 

Let 
1 2( ) , '( )f y f y     and  

3"( )f y  . 

so that   2

3 1 3 2 2

1
' 1 (1 )

p

y y y y M y
K

 
        

 

 

with  (1) 0, (2) 0, (2) 1.a a by y y    

 

 

 

 

 

 

 

 

 



12 

 

6. Results and Discussion 

The DTM-Pade approximant and Runge-Kutta method with shooting technique 

have been applied for solving Hiemenz magnetic flow through porous medium. The 

solution for the flow without porous medium has been derived as a particular case and 

the results are compared with the results obtained by the method of finite difference in 

conjunction with quasilinearization technique in Na [2]. 

Figures 2, 3 and 4 exhibit the results respectively obtained by DTM, DTM-Pade 

and Runge-Kutta method associated with shooting technique. It is large enough to be 

noticed that the effect of magnetic parameter is to enhance the velocity of the fluid 

irrespective of the presence or absence of porous matrix. On careful observation it is 

further remarked that presence of porous matrix also increases the velocity profiles at all 

the points. This is due to the fact that porous matrix acting as an insulator to the 

boundary surface prevents energy loss due to free convection which in turn enhances 

the velocity. Therefore, it is concluded that presence of porous matrix as well as 

magnetic field enhances the velocity of the fluid at all points of the flow domain. This is 

because the boundary surface effects dominate over the effect of magnetic field as well 

as porous matrix. From figures 3 and 4 it is observed that the attainment of ambient 

state is faster in case of DTM-Pade in comparison with DTM and it is still faster in case 

of Runge-Kutta method.  



13 

 

  

 

 

 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5 
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

                    

 

  

  

 

Kp=100 

Kp=0.5 

M=0.5 

M = 1.0 
M = 2.0 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5 
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

                          

'( )f    

  

  
M=0.5, Kp=100 

M=1.0, Kp=100 
M=2.0, Kp=100 

M=0.5, Kp=0.5 

M=1.0, Kp=0.5 

M=2.0, Kp=0.5 

 

Kp =100 

Kp =0.5 

M=1.0 

M=2.0 

M=0.5 

Fig. 2 Velocity profiles (DTM) 

'( )f 

f’() 



14 

 

 

 

Fig. 4   Velocity profiles (Runge-Kutta method). 

Now, the Table-4 presents the numerical values of skin friction computed by 

different methods. It is evident that skin friction (in magnitude) increases with an 

increase in the values of magnetic parameter with or without porous medium. It is also 

seen that presence of porous matrix increases the skin friction (in magnitude) for a fixed 

value of magnetic parameter. 

Table-4 further reveals that the values of skin friction obtained by (i) Runge-

Kutta and (ii) Finite difference in conjunction with quasilinearization agree upto first 

decimal place. This shows the consistency of the methods applied in the present analysis 

to solve the modified MHD Hiemenz flow. It is suggested that the accuracy of DTM-

Pade method can be improved by employing higher degree diagonal Pade approximants.  
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Table - 4: Skin friction coefficient (2A) 

M Kp DTM-Pade Runge-Kutta Quasilinearization NA [2] 

0.5 100 1.6368 1.3832 1.362 

1 100 1.7320 1.5885 1.5394 

2 100 1.7836 1.8761 1.833 

0.5 0.5 1.6023 2.0022 - 

1 0.5 1.9265 2.1232 - 

2 0.5 2.0065 2.3466 - 

7. Conclusion 

The present study provides the theoretical as well as numerical solutions for 

steady boundary layer MHD flow over a stretching sheet in a porous medium. The 

DTM-Pade and Runge-Kutta method are consistent within certain degree of accuracy to 

solve non-linear boundary value problems and convergence of the method can be 

accelerated with higher dimension Pade approximant matrices so as to attain the 

ambient state of the flow which is also assisted by the presence of magnetic field and 

porous medium. It is interesting to note that the presence of porous matrix as well as 

magnetic field enhance the velocity at all points of flow domain. This is due to the fact 

that the boundary surface effects dominate over the effect of magnetic field as well as 

porous matrix. It is further concluded that presence of magnetic field and porous 

medium is found to be counterproductive in reducing the skin friction at the surface of 

the plate. 
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